Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 30(10): 2050058, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880202

RESUMO

Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.


Assuntos
Envelhecimento/fisiologia , Doença de Parkinson/fisiopatologia , Fonação/fisiologia , Distúrbios da Fala/fisiopatologia , Máquina de Vetores de Suporte , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Doença de Parkinson/complicações , Acústica da Fala , Distúrbios da Fala/etiologia
2.
Front Neurosci ; 14: 446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431593

RESUMO

Neural responses of oddball tasks can be used as a physiological biomarker to evaluate the brain potential of information processing under the assumption that the differential contribution of deviant stimuli can be assessed accurately. Nevertheless, the non-stationarity of neural activity causes the brain networks to fluctuate hugely in time, deteriorating the estimation of pairwise synergies. To deal with the time variability of neural responses, we have developed a piecewise multi-subject analysis that is applied over a set of time intervals within the stationary assumption holds. To segment the whole stimulus-locked epoch into multiple temporal windows, we experimented with two approaches for piecewise segmentation of EEG recordings: a fixed time-window, at which the estimates of FC measures fulfill a given confidence level, and variable time-window, which is segmented at the change points of the time-varying classifier performance. Employing the weighted Phase Lock Index as a functional connectivity metric, we have presented the validation in a real-world EEG data, proving the effectiveness of variable time segmentation for connectivity extraction when combined with a supervised thresholding approach. Consequently, we performed a piecewise group-level analysis of electroencephalographic data that deals with non-stationary functional connectivity measures, evaluating more carefully the contribution of a link node-set in discriminating between the labeled oddball responses.

3.
Front Comput Neurosci ; 13: 80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849630

RESUMO

Affective human-robot interaction requires lightweight software and cheap wearable devices that could further this field. However, the estimation of emotions in real-time poses a problem that has not yet been optimized. An optimization is proposed for the emotion estimation methodology including artifact removal, feature extraction, feature smoothing, and brain pattern classification. The challenge of filtering artifacts and extracting features, while reducing processing time and maintaining high accuracy results, is attempted in this work. First, two different approaches for real-time electro-oculographic artifact removal techniques are tested and compared in terms of loss of information and processing time. Second, an emotion estimation methodology is proposed based on a set of stable and meaningful features, a carefully chosen set of electrodes, and the smoothing of the feature space. The methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation on the SEED database, both under subject dependent and subject independent paradigms, to test the methodology on a discrete emotional model with three affective states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...